AniMove
 general R Reference Card

www.animove.org
last update: April 16, 2014

Getting help

help(topic) documentation on topic
?topic short alternative to help
help.search("topic") search the help system
apropos("topic") the names of all objects in the search list matching the regular expression "topic"
help.start() start the HTML version of help
methods(a) e.g. methods(summary) gives all summary commands

Information about your data

$\operatorname{str}(a)$ display the internal structure of an R object
summary (a) gives a "summary" of a, usually a statistical summary but it is generic meaning it has different operations for different classes of a
ls() show objects in the search path; specify pat="pat" to search on a pattern
dir() show files in the current directory

Input and output

source("script.R") includes and executes script.R in this place read.table(f) reads a file in table format and creates a data frame from it; the default separator $s e p=" "$ is any whitespace; use header=TRUE to read the first line as a header of column names; use as.is=TRUE to prevent character vectors from being converted to factors; use comment.char="" to prevent "\#" from being interpreted as a comment; use skip=n to skip n lines before reading data; see the help for options on row naming, NA treatment, and others
read.csv(f,header=TRUE) id. but with defaults set for reading comma-delimited files
print(a, ...) prints its arguments; generic, meaning it can have different methods for different objects
write.table(x, file=f,row.names=TRUE, col.names=TRUE, sep=" ") prints x after converting to a data frame; if quote is TRUE, character or factor columns are surrounded by quotes ("); sep is the field separator; eol is the end-of-line separator; na is the string for missing values; use col.names $=\mathrm{NA}$ to add a blank column header to get the column headers aligned correctly for spreadsheet input
data(f) loads specified data sets
For database interaction, see packages RODBC, DBI, RMySQL, RPgSQL, ROracle, for other file formats see XML, hdf5, netCDF

Data creation \& removal

c(...) generic function to combine arguments with the default forming a vector; with recursive=TRUE descends through lists combining all elements into one vector
from:to generates a sequence; ":" has operator priority; 1:4 + 1 returns 2345
seq(from,to) generates a sequence by= specifies increment; length $=$ specifies desired length
seq(along=x) generates 1, 2, ... le length(along); useful for for loops
rep(x,times) replicate x times; use each= to repeat "each" element of x each times; $\operatorname{rep}(c(1,2,3), 2)$ is 123123 rep $(c(1,2,3)$, each=2) is 112233
data.frame(...) create a data frame of the named or unnamed ar guments; data.frame (v=1:4, ch=c("a", "B", "c", "d"), $n=10$); shorter vectors are recycled to the length of the longest
list(...) create a list of the named or unnamed arguments; list (a=c (1,2) , b="hi", c=3i);
array ($\mathrm{x}, \operatorname{dim}=$) array with data x ; specify dimensions like $\operatorname{dim}=c(3,4,2)$; elements of x recycle if x is not long enough matrix($\mathrm{x}, \mathrm{nrow}=, \mathrm{ncol}=$) matrix; elements of x recycle
factor ($\mathrm{x}, \mathrm{level} \mathrm{s}=$) encodes a vector x as a factor
expand.grid() a data frame from all combinations of the supplied vectors or factors
cbind(df1, df2), rbind(df1,df2) combine arguments by columns (rows) for data frames and the like
rm(obj) removes object
rm(list $=$ ls(all $=$ TRUE)) removes all objects

Indexing your data
 addressing vectors

$v[n]$
$\mathrm{v}[-\mathrm{n}]$
$\mathrm{v}[1: \mathrm{n}]$
$\mathrm{v}[-(1: \mathrm{n})]$
$\mathrm{v}[\mathrm{c}(1,4,2)]$
v["name"]
$\mathrm{v}[\mathrm{x}>3]$
$\mathrm{v}[\mathrm{x}>3 \& \mathrm{x}<5]$
v[x \%in\% c("a","and","the")] elements in the given set

$\mathrm{x}[\mathrm{n}] \quad$ list with elements n $\mathrm{x}[\mathrm{n}]] \quad \mathrm{n}^{\text {th }}$ element of the list $\mathrm{x}[$ ["name"] $]$ element of the list named "name" x nname id.

addressing matrices

$x[i, j] \quad$ element at row i, column j
$x[i$,$] \quad row i$
$x[, j] \quad$ column j
$\mathrm{x}[, \mathrm{c}(1,3)]$ columns 1 and 3
x["name",] row named "name"

adressing data frames

similar functions as in the matrix indexing plus:
df[["name"]] column named "name"
df\$name column named "name"
df [,"name"] column named "name"

Variable information

is.na(x), is.null(x), is.array(x), is.data.frame(x), is.numeric(x), is.complex(x), is.character(x), test for type; for a complete list, use methods (is)
length(x) number of elements in x
$\operatorname{dim}(x)$ Retrieve or set the dimension of an object; $\operatorname{dim}(x)<-$ c $(3,2)$
dimnames (x) Retrieve or set the dimension names of an object nrow (x) number of rows; $\operatorname{NROW}(x)$ is the same but treats a vector as a one-row matrix
$n \operatorname{col}(x)$ and $\operatorname{NCOL}(x)$ id. for columns
class (x) get or set the class of x ; class (x) <- "myclass" unclass(x) remove the class attribute of x
attr(x,which) get or set the attribute which of x attributes(obj) get or set the list of attributes of obj

Data selection and manipulation

which.max(v), which.min(v) returns the index of the maximum (minimum) element of v
$r e v(v)$ reverses the elements of v
sort (v) sorts the elements of v in increasing order; to sort in decreasing order: rev(sort(x))
cut ($\mathrm{x}, \mathrm{breaks}$) divides x into intervals (factors); breaks is the number of cut intervals or a vector of cut points
$\operatorname{match}(\mathrm{x}, \mathrm{y})$ returns a vector of the same length than x with the elements of x which are in y (NA otherwise)
which ($x==a$) returns a vector of the indices of x if the comparison operation is true (TRUE)
na.omit (x) suppresses the observations with missing data (NA)
na.fail(x) returns an error message if x contains at least one NA
unique (x) if x is a vector or a data frame, returns a similar object but with the duplicate elements suppressed
table (x) returns a table with the numbers of the differents values of x (typically for integers or factors)
subset (x, \ldots) returns a selection of x with respect to criteria (..., typically comparisons: $\mathrm{x} \$ \mathrm{~V} 1<10$); if x is a data frame, the option select gives the variables to be kept or dropped using a minus sign
sample(x, size) resample randomly and without replacement size elements in the vector x , the option replace $=$ TRUE allows to resample with replacement

Math

sin, cos, tan, asin, acos, atan, atan2, log, log $10, \exp$
range (x) id. then $c(\min (x), \max (x))$
$\operatorname{sum}(x)$ sum of the elements of x
$\operatorname{diff}(x)$ lagged and iterated differences of vector x
$\operatorname{prod}(x)$ product of the elements of x
mean (x) mean of the elements of x
median(x) median of the elements of x
quantile($\mathrm{x}, \mathrm{probs=}$) sample quantiles corresponding to the given probabilities (defaults to $0, .25, .5, .75,1$)
weighted.mean (x, w) mean of x with weights w
rank(x) ranks of the elements of x
$\operatorname{var}(x)$ or $\operatorname{cov}(x)$ variance of the elements of $x($ calculated on $n-1)$;
if x is a matrix or a data frame, the variance-covariance matrix is calculated
$s d(x)$ standard deviation of x
$\operatorname{cor}(x)$ correlation matrix of x if it is a matrix or a data frame (1 if x is a vector)
$\operatorname{var}(\mathrm{x}, \mathrm{y})$ or $\operatorname{cov}(\mathrm{x}, \mathrm{y})$ covariance between x and y , or between the columns of x and those of y if they are matrices or data frames
$\operatorname{cor}(x, y)$ linear correlation between x and y, or correlation matrix if they are matrices or data frames
round (x, n) rounds the elements of x to n decimals
$\log (v, b a s e)$ computes the logarithm of x with base base $\log 10(v)$ base $=10$
scale(x) if x is a matrix, centers and reduces the data; to center only use the option center=FALSE, to reduce only scale=FALSE (by default center=TRUE, scale=TRUE)
$\operatorname{pmin}(x, y, \ldots)$ a vector which i th element is the minimum of $x[i]$, y[i]. .
$\operatorname{pmax}(x, y, \ldots)$ id. for the maximum
cumsum (v) a vector which i th element is the sum from $\mathrm{x}[1]$ to x [i]
$\operatorname{cumprod}(\mathrm{v}) f_{i}=\Pi_{j=1 . . i} x_{j}=\left(x_{1}, x_{1} \cdot x_{2}, \ldots\right)$
cummin(v) $f_{i}=\min \left(x_{1} \ldots x_{i}\right)$
cummax (v) id. for the maximum
union(x, y), intersect (x, y), setdiff(x, y), setequal (x, y) is.element(el,set) "set" functions
fft(v) Fast Fourier Transform mvfft(x) FFT of each column of a matrix
filter(x,filter) applies linear filtering to a univariate time series or to each series separately of a multivariate time series

Matrices

(x) transpose
$\operatorname{diag}(x)$ diagonal
$\% * \%$ matrix multiplication and scalar product
solve (a,b) solves a $\% * \% \mathrm{x}=\mathrm{b}$ for x
solve(a) matrix inverse of a
rowsum (x) sum of rows for a matrix-like object; rowSums (x) is a faster version
colsum (x), colSums(x) id. for columns
rowMeans (x) fast version of row means colMeans (x) id. for columns

Advanced data processing

The apply family functions are very powerful and fast, they do replace a 'for loop' but are difficult to grasp.
apply (X, INDEX, FUN=) a vector or array or list of values obtained
by applying a function FUN to margins (INDEX) of X
lapply (X,FUN) apply FUN to each element of the list X
tapply (X,INDEX,FUN=) apply FUN to each cell of a ragged array given by X with indexes INDEX
by (data, INDEX,FUN) apply FUN to data frame data subsetted by INDEX
merge (a, b) merge two data frames by common columns or row names
xtabs (a b, data=x) a contingency table from cross-classifying factors
aggregate (df, by , FUN) splits a data frame into subsets, computes summary statistics for each, and returns the result in a convenient form; by is a list of grouping elements, each as long as the variables in the data frame
stack(x, \ldots. ..) transform data available as separate columns in a data frame or list into a single column
unstack (x, \ldots. .) inverse of stack()

Reshaping your data

cast (x, ...) reshapes a data frame between 'wide' format with repeated measurements in separate columns of the same record and long' format with the repeated measurements in separate records; use (direction="wide") or (direction="long")
melt (x, ...) melts an object into a form suitable for casting

Strings

paste(s1,s2, sep=" ") concatenate vectors after converting to character; collapse $=$ is an optional string to separate "collapsed" results paste0(s1,s2) paste without seperator (since R 2.15)
substr(s,start,stop) substrings in a character vector; can also assign, as substr(s, start, stop) <- value
strsplit(s,split) split s according to the substring split
grep (pattern,s) search pattern in s; see ?regex
tolower(s), toupper(s) convert to lowercase (uppercase)
$\operatorname{match}(x, t a b l e)$ a vector of the positions of first matches for the elements of x among table
x \%in\% table id. but returns a logical vector

Dates and Times

All animal tracks come with a time stamp. The class Date has dates without times. POSIXct has dates and times, including time zones. Comparisons (e.g. $>$), seq(), and difftime() are useful. Date also allows + and -. ?DateTimeClasses gives more information. See also package chron.
as.Date(s) and as.POSIXct(s) convert to the respective class; format (dt) converts to a string representation. The default string format is "2012-02-21". These accept a second argument to specify a format for conversion. Some common formats are:
\%a, \%A Abbreviated and full weekday name
$\% \mathrm{~b}, \% \mathrm{~B}$ Abbreviated and full month name.
$\%$ d Day of the month (01-31).
\%H Hours (00-23).
\%I Hours (01-12).
\%j Day of year (001-366)
\%m Month (01-12).
$\%$ M Minute (00-59).
$\%$ AM/PM indicator
\%S Second as decimal number (00-61).
$\%$ U Week (00-53); the first Sunday as day 1 of week 1.
\%w Weekday ($0-6$, Sunday is 0).
$\%$ W Week ($00-53$); the first Monday as day 1 of week 1.
$\%$ y Year without century (00-99). Avoid it.
\%Y Year with century.
$\%$ (read only) Offset from Greenwich; -0800 is 8 hours west of. $\%$ (read only) Time zone as a character string (empty if not available).

Where leading zeros are shown they will be used on output but are optional on input. See ?strftime.

Plotting

Several plotting options exist in R to plot your results and these are constantly changing. Below you will find standard R plotting commands and further down more sophisticated options using e.g. ggplot2 functionality. Furthermore does R offer spatial data plotting options which can be found on the AniMove spatial cheat sheet.
plot (y) plot of the values of y (on the y-axis) ordered on the x-axis plot (x, y) bivariate plot of x agains y
hist (x) histogram of the frequencies of x
barplot (x) histogram of the values of x ; use horiz=FALSE for horizontal bars
dotchart (x) if x is a data frame, plots a Cleveland dot plot (stacked plots line-by-line and column-by-column)
pie(x) circular pie-chart
boxplot (x) "box-and-whiskers" plot
sunflowerplot(x, y) id. than plot() but the points with similar coordinates are drawn as flowers which petal number represents the number of points
stripplot(x) plot of the values of x on a line (an alternative to boxplot() for small sample sizes)
$\operatorname{coplot}(x \sim y \mid z)$ bivariate plot of x and y for each value or interval of values of z
interaction.plot (f1, f2, y) if f1 and f2 are factors, plots the means of y (on the y-axis) with respect to the values of f 1 (on the x-axis) and of f 2 (different curves); the option fun allows to choose the summary statistic of y (by default fun=mean)
$\operatorname{matplot}(\mathrm{x}, \mathrm{y})$ bivariate plot of the first column of x vs. the first one of y , the second one of $\mathrm{x} v s$. the second one of y , etc.
fourfoldplot (x) visualizes, with quarters of circles, the association between two dichotomous variables for different populations (x must be an array with $\operatorname{dim}=c(2,2, k)$, or a matrix with $\operatorname{dim}=\mathrm{c}(2,2)$ if $k=1)$
assocplot (x) Cohen-Friendly graph showing the deviations from independence of rows and columns in a two dimensional contingency table
mosaicplot(x) 'mosaic' graph of the residuals from a log-linear regression of a contingency table
pairs(x) if x is a matrix or a data frame, draws all possible bivariate plots between the columns of x
plot.ts(x) if x is an object of class "ts", plot of x with respect to time, x may be multivariate but the series must have the same frequency and dates
ts. plot (x) id. but if x is multivariate the series may have different dates and must have the same frequency
qqnorm(x) quantiles of x with respect to the values expected under a normal law
qqplot (x, y) quantiles of y with respect to the quantiles of x contour ($\mathrm{x}, \mathrm{y}, \mathrm{z}$) contour plot (data are interpolated to draw the curves), x and y must be vectors and z must be a matrix so that $\operatorname{dim}(z)=c(l e n g t h(x)$, length $(y))$ (x and y may be omitted)
filled.contour(x, y, z) id. but the areas between the contours are coloured, and a legend of the colours is drawn as well image (x, y, z) id. but with colours (actual data are plotted) $\operatorname{persp}(x, y, z)$ id. but in perspective (actual data are plotted) $\operatorname{stars}(x)$ if x is a matrix or a data frame, draws a graph with segments or a star where each row of x is represented by a star and the columns are the lengths of the segments
symbols(x, y, ...) draws, at the coordinates given by x and y , symbols (circles, squares, rectangles, stars, thermometres or "boxplots") which sizes, colours ... are specified by supplementary arguments
termplot(mod.obj) plot of the (partial) effects of a regression model (mod.obj)

The following parameters are common to many plotting functions:
add=FALSE if TRUE superposes the plot on the previous one (if it exists)
axes=TRUE if FALSE does not draw the axes and the box
type="p" specifies the type of plot, "p": points, "l": lines, "b": points connected by lines, "o": id. but the lines are over the points, "h": vertical lines, "s": steps, the data are represented by the top of the vertical lines, "S": id. but the data are represented by the bottom of the vertical lines
xlim=, ylim= specifies the lower and upper limits of the axes, for example with $\operatorname{xlim}=c(1,10)$ or xlim=range (x)
$\mathrm{xlab}=$, ylab= annotates the axes, must be variables of mode character
main= main title, must be a variable of mode character sub= sub-title (written in a smaller font)

Low-level plotting commands

points (x, y) adds points (the option type= can be used) lines (x, y) id. but with lines
text (x, y, labels, ...) adds text given by labels at coordinates (x, y); a typical use is: plot (x, y, type="n"); text (x, y, names)
mtext (text, $\operatorname{side}=3$, line $=0, \ldots$) adds text given by text in the margin specified by side (see axis() below); line specifies the line from the plotting area
segments (x 0 , $\mathrm{y} 0, \mathrm{x} 1, \mathrm{y} 1$) draws lines from points ($\mathrm{x} 0, \mathrm{y} 0$) to points ($\mathrm{x} 1, \mathrm{y} 1$)
arrows (x0, y0, x1, y1, angle= 30, code=2) id. with arrows at points ($\mathrm{x} 0, \mathrm{y} 0$) if code=2, at points ($\mathrm{x} 1, \mathrm{y} 1$) if code=1, or both if code=3; angle controls the angle from the shaft of the arrow to the edge of the arrow head
abline (a, b) draws a line of slope b and intercept a
abline (h=y) draws a horizontal line at ordinate y (vertical line: =v)
abline(lm.obj) draws the regression line given by lm.obj rect $(x 1, y 1, x 2, y 2)$ draws a rectangle which left, right, bottom, and top limits are $\mathrm{x} 1, \mathrm{x} 2, \mathrm{y} 1$, and y 2 , respectively
polygon (x, y) draws a polygon linking the points with coordinates given by x and y
legend (x, y, legend) adds the legend at the point (x, y) with the symbols given by legend
title() adds a title and optionally a sub-title
axis(side, vect) adds an axis at the bottom (side=1), on the left (2), at the top (3), or on the right (4); vect (optional) gives the abcissa (or ordinates) where tick-marks are drawn
locator (n , type=" n ", ...) returns the coordinates (x, y) after the user has clicked n times on the plot with the mouse; also draws symbols (type="p") or lines (type="l") with respect to optional graphic parameters (...); by default nothing is drawn (type="n")

Graphical parameters

These can be set globally with par(...); many can be passed as parameters to plotting commands.
adj controls text justification (0 left-justified, 0.5 centred, 1 rightjustified)
bg specifies the colour of the background (ex. : bg="red", $\mathrm{bg}=$ "blue", ... the list of the 657 available colours is displayed with colors())
bty controls the type of box drawn around the plot, allowed values are: "о", "l", "7", "c", "u" ou "]" (the box looks like the corresponding character); if $b t y=" n "$ the box is not drawn
cex a factor controlling the default size of texts and symbols; you can scale numbers on the axes, cex.axis, the axis labels, cex.lab, the title, cex.main, and the sub-title, cex.sub
col controls the color of symbols and lines; use color names: "red", "blue" see colors() or as "\#RRGGBB"; see rgb(), hsv(), gray(), and rainbow(); as for cex there are: col.axis, col.lab, col.main, col.sub
font an integer which controls the style of text (1: normal, 2: italics, 3: bold, 4: bold italics); as for cex there are: font.axis, font.lab, font.main, font.sub
las an integer which controls the orientation of the axis labels (0 : parallel to the axes, 1: horizontal, 2: perpendicular to the axes, 3: vertical)
lty controls the type of lines, can be an integer or string (1: "solid", 2: "dashed", 3: "dotted", 4: "dotdash", 5: "longdash", 6: "twodash", or a string of up to eight characters (between "0" and "9") which specifies alternatively the length, in points or pixels, of the drawn elements and the blanks, for example lty="44" will have the same effect than lty=2
lwd a numeric which controls the width of lines, default 1
mar a vector of 4 numeric values which control the space between the axes and the border of the graph of the form c (bottom, left, top, right), the default values are $c(5.1,4.1$, 4.1, 2.1)
mfcol a vector of the form $\mathrm{c}(\mathrm{nr}, \mathrm{nc})$ which partitions the graphic window as a matrix of nr lines and nc columns, the plots are then drawn in columns
mfrow id. but the plots are drawn by row
pch controls the type of symbol, either an integer between 1 and 25 , or any single character within ""
$102 \Delta 3+4 \times 5 \diamond 6 \nabla 7 \boxtimes 8 * 9 \oplus 10 \oplus 11$ 药 12 田 $13 \otimes 14 \boxtimes 15$ ■
ps size in points of texts and symbols as intege
pty a character which specifies the type of the plotting region, "s": square, "m": maximal

ggplot2

ggplot2 comes with its own syntax which is different from normal R syntax. It takes quite a while to learn it but produces very fancy graphics.
qplot($x=v x, y=v y$, data=df) plots columns $d f \$ v x$ and df\$vy ggsave() save the last plot
ggplot2 comes with a lot of more functions, please read the ggplot2 manual for further information. The reshape 2 package is very handy for reshaping your data and RColorBrewer increases your color choices.

Lattice (Trellis) graphics

xyplot ($y^{\sim} \mathrm{x}$) bivariate plots (with many functionalities) barchart ($y^{\sim} x$) histogram of the values of y with respect to those of x
$\operatorname{dotplot}\left(y^{\sim} \mathrm{x}\right)$ Cleveland dot plot (stacked plots line-by-line and column-by-column)
densityplot($\sim x$) density functions plot
histogram (${ }^{x}$ x) histogram of the frequencies of x
bwplot ($\mathrm{y} \sim \mathrm{x}$) "box-and-whiskers" plot
qqmath $(\sim x)$ quantiles of x with respect to the values expected under a theoretical distribution
stripplot ($y^{\sim} x$) single dimension plot, x must be numeric, y may be a factor
$\mathrm{qq}\left(\mathrm{y}^{\sim} \mathrm{x}\right)$ quantiles to compare two distributions, x must be numeric, y may be numeric, character, or factor but must have two 'levels'
splom($\left.{ }^{\sim} x\right)$ matrix of bivariate plots
levelplot ($z^{\sim} x * y \lg 1 * g 2$) coloured plot of the values of z at the coordinates given by x and y (x, y and z are all of the same length)
wireframe ($\mathrm{z}^{\sim} \mathrm{x} * \mathrm{y} \mid \mathrm{g} 1 * \mathrm{~g} 2$) 3d surface plot
cloud ($z^{\sim} \mathrm{x} * \mathrm{y} \mid \mathrm{g} 1 * \mathrm{~g} 2$) 3d scatter plot

Statistics, optimization and model fitting aov (formula) analysis of variance model
anova(fit,...) analysis of variance (or deviance) tables for one or more fitted model objects
lm(formula) fit linear models; formula is typically of the form response termA + termB + ...; use $I(x * y)+I\left(x^{\wedge} 2\right)$ for terms made of nonlinear components
glm (formula, family=) fit generalized linear models, specified by giving a symbolic description of the linear predictor and a description of the error distribution; family is a description of the error distribution and link function to be used in the model; see ?family
nls(formula) nonlinear least-squares estimates of the nonlinear model parameters
$\operatorname{glm}()$ generalized linear model
gam() generalized additive model
kmeans() kmeans clustering
tree() builds a decision tree
rpart () builds a decision tree
randomForest () random forest machine learning
maxent() Maximum Entropy model
svm() Support Vector Machines in the e1071 package, but other packages provide SVM as well such as: kernlab, klaR, svmpath, shogun
$\operatorname{approx}(\mathrm{x}, \mathrm{y}=)$ linearly interpolate given data points; x can be an xy plotting structure
spline ($x, y=$) cubic spline interpolation
loess (formula) fit a polynomial surface using local fitting predict(fit,...) predictions from fit based on input data coef (fit) returns the estimated coefficients (sometimes with their standard-errors)
residuals(fit) returns the residuals
deviance(fit) returns the deviance
fitted(fit) returns the fitted values
logLik(fit) computes the logarithm of the likelihood and the number of parameters
AIC(fit) computes the Akaike information criterion or AIC

Distributions

rnorm(n, mean=0, sd=1) Gaussian (normal)
rexp(n, rate=1) exponential
rgamma(n, shape, scale=1) gamma
rpois (n, lambda) Poisson
rt (n, df) 'Student' (t)
rchisq(n, df) Pearson
rbinom(n, size, prob) binomia
rlogis(n, location=0, scale=1) logistic
rnbinom(n, size, prob) negative binomial runif ($n, \min =0$, max=1) uniform
rwilcox(nn, m, n), rsignrank(nn, n) Wilcoxon's statistics All these functions can be used by replacing the letter r with d, p or q to get, respectively, the probability density (dfunc (x, ...)), the cumulative probability density (pfunc (x, ...)), and the value of quantile (q func $(p, \ldots$), with $0<p<1$).

Programming

function(arglist) expr function definition
return(value)
if(cond) expr
if (cond) cons.expr else alt.expr
for (var in seq) expr
while(cond) expr
repeat expr
break
next
Use braces $\}$ around statements
ifelse(test, yes, no) a value with the same shape as test filled with elements from either yes or no

Examples in this document use the variables df $=$ data frame object, $\mathrm{v}=$ vector, $\mathrm{s}=$ string, $\mathrm{f}=$ filename as string

Credits

This R reference card is adapted to AniMove needs by Martin Wegmann, Benjamin Leutner and Mirjana Bevanda but based on the reference card by Jonas Stein, Tom Short and Emmanuel Paradis.

